
Automated Feedback Generation for Competition-Level Code
Jialu Zhang
Yale University

New Haven, Connecticut, USA

De Li
The MathWorks, Inc.

Natick, Massachusetts, USA

John C. Kolesar
Yale University

New Haven, Connecticut, USA

Hanyuan Shi
Independent Researcher

Hangzhou, Zhejiang, China

Ruzica Piskac
Yale University

New Haven, Connecticut, USA

ABSTRACT
Competitive programming has become a popular way for program-
mers to test their skills. Competition-level programming problems
are challenging in nature, and participants often fail to solve the
problem on their first attempt. Some online platforms for competi-
tive programming allow programmers to practice on competition-
level problems, and the standard feedback for an incorrect practice
submission is the first test case that the submission fails. Often,
the failed test case does not provide programmers with enough
information to resolve the errors in their code, and they abandon
the problem after making several more unsuccessful attempts.

We present Clef, the first data-driven tool that can generate
feedback on competition-level code automatically by repairing pro-
grammers’ incorrect submissions. The key development is that Clef
can learn how to generate repairs for incorrect submissions by
examining the repairs that other programmers made to their own
submissions over time. Since the differences between an incorrect
program and a correct program for the same task may be signifi-
cant, we introduce a new data structure, merge trees, to capture the
changes between submissions. Merge trees are versatile: they can
encode both large algorithm-level redesigns and small statement-
level alterations. We evaluated Clef on six real-world problems
from Codeforces, the world’s largest platform for competitive pro-
gramming. Clef achieves 41.8% accuracy in repairing programmers’
incorrect submissions. When given incorrect submissions from pro-
grammers who never found the solution to a problem on their own,
Clef repairs the users’ programs 34.1% of the time.

CCS CONCEPTS
• Applied computing→ Computer-assisted instruction.

KEYWORDS
Automated feedback generation, competitive programming, pro-
gramming education, program repair

ACM Reference Format:
Jialu Zhang, De Li, John C. Kolesar, Hanyuan Shi, and Ruzica Piskac. 2022.
Automated FeedbackGeneration for Competition-Level Code. In 37th IEEE/ACM

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9475-8/22/10.
https://doi.org/10.1145/3551349.3560425

International Conference on Automated Software Engineering (ASE ’22), Oc-
tober 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3551349.3560425

1 INTRODUCTION
Competitive programming enjoys widespread popularity. The Inter-
national Collegiate Programming Contest (ICPC), one of the most
prestigious programming contests for college students, has been
held annually for more than 50 years. Each year, more than 50,000
students from over 3,000 universities in over 100 countries compete
for medals in the contest [7]. Moreover, competitive programming
has had a significant impact in industry as well. Platforms such as
Codeforces1 and Topcoder2 host large-scale online programming
contests that attract millions of experienced programmers. Soft-
ware companies view the finalists in the competitions as strong
candidates for hiring since the finalists demonstrate solid algorith-
mic problem-solving skills and an outstanding ability to handle
on-the-spot stress. Some software companies, such as Google [5],
Meta [6], Microsoft [3], Yandex [8], and HP [2], even hold their
own online programming contests for recruiting purposes [5].

In a programming competition, participants receive a descrip-
tion of a problem and a short list of sample tests illustrating how
the program should behave. The participants develop solutions for
the problem and submit them. The solutions are evaluated auto-
matically on a number of different tests that are hidden from the
participants. If a solution passes every test in the suite, it is accepted
as correct. Competition-level problems are non-trivial: correct im-
plementations sometimes require hundreds of lines of code, and the
entire program needs to be efficient and bug-free. The competition
platform’s automatic tests can involve carefully-designed corner
cases, along with hard limits on execution time and memory usage.
State-of-the-art feedback generation for programmers’ in-
correct submissions. Some competitive programming platforms
allow programmers to practice on problems from past competi-
tions. Currently, the standard response to a programmer’s incorrect
practice submission is simply to expose the first test case that the
submission fails. Even with test case exposure for failures, many
programmers still fail to solve the problem in the end, and they
abandon the problem after several attempts. For the problems that
we surveyed, 52.2% of the incorrect submissions had no correct
follow-up submission. Forums can serve as a helpful source of feed-
back for programmers while they are practicing, but users who post
questions on a forum have no guarantee of a timely response. Fur-
thermore, the feedback from other forum users can be incomplete
1https://codeforces.com
2https://www.topcoder.com

https://doi.org/10.1145/3551349.3560425
https://doi.org/10.1145/3551349.3560425

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jialu Zhang, De Li, John C. Kolesar, Hanyuan Shi, and Ruzica Piskac

or incorrect, and the users who post the questions might not ask for
the right information in the first place because they misunderstand
their own problems. A tool that repairs programs or provides useful
feedback automatically would be a helpful alternative.

In recent years, researchers in the automated program repair
community have worked on generating feedback automatically
for intro-level programming assignments [18, 20, 40, 42–44]. State-
of-the-art feedback generators use data-driven approaches. They
all take advantage of databases of previously-written submissions
to learn how to repair new incorrect submissions. Unfortunately,
these tools target only problems from intro-level programming
courses, and their feedback generation techniques do not suffice for
competition-level problems. Two major differences exist between
intro-level and competition-level programming:

• The difficulty level of the problems. Intro-level program-
ming problems focus primarily on training programmers to
use the features of a language correctly [19]. On the other
hand, competition-level programming problems require pro-
grammers to understand complex natural-language descrip-
tions, to master a wide range of algorithms and data struc-
tures, and to implement solutions that may involve hundreds
of lines of code.

• The evaluation metrics. Intro-level programming prob-
lems usually do not have rigorous evaluationmetrics. Restric-
tions on execution time and memory consumption are rare:
generally, the test suites for intro-level problems only cover
functional correctness. On the other hand, evaluation suites
for competition-level problems perform rigorous checks on
execution time and memory consumption. Any timeout or
excessive memory usage causes the suite to mark a submis-
sion as incorrect even if the program behaves perfectly in
terms of functional correctness.

Furthermore, state-of-the-art intro-level feedback generators suf-
fer from a variety of weaknesses, including the inability to generate
complex repairs [20, 40, 44], the tendency to enlarge programs ex-
cessively with repairs [18], and dependence on manual guidance
from users [42]. Finding an effective automatic feedback generation
method for competition-level code remains an open problem.

Problem 1475A from Codeforces illustrates some of the major
differences between intro-level and competition-level problems.
The input is an integer𝑛 (2 < 𝑛 < 1014), and the goal is to determine
whether𝑛 has any odd divisor greater than one.3 The execution time
limit for Problem 1475A is two seconds per test, and the memory
limit is 256 MB per test. One solution for the problem on Stack
Overflow [1] performs an exhaustive search by iterating over every
odd number in (1, 𝑛) and checking whether 𝑛 is divisible by it:
for (unsigned long long i=3; i<n; i+=2){

if (n%i == 0) return true; //It has an odd divisor
}
return false; // n%i == 0 was never true so it doesn't

have an odd divisor

This submission is syntactically and semantically correct. How-
ever, it fails to pass the evaluation suite: the test suite marks it
as incorrect with “Time limit exceeded on test 2” as the feedback.
Solving the problem correctly within the time limit requires a more

3https://codeforces.com/contest/1475/problem/A

efficient algorithm, and finding that efficient algorithm requires
an important insight: the odd divisor problem reduces to checking
whether 𝑛 is a power of two. An efficient program for Problem
1475A right-shifts 𝑛 repeatedly to remove trailing zeroes and then
checks at the end that the remaining one is the only one in 𝑛:
while (!(n&1)) n >>= 1;
if (n==1) return false; else return true;

Problem 1475A presents a challenge for automated feedback gen-
eration tools. A submission that approaches the problem incorrectly
may require a complete algorithm-level redesign, not just a small
local repair. The automatic feedback provided by Codeforces did not
help the programmer who wrote the exhaustive-search implemen-
tation to see that a completely different approach was necessary.
Additionally, state-of-the-art tools [18, 20, 40, 42, 44] cannot make
the repairs that the program needs because they view correctness
only in terms of input-output correspondence, not efficiency.
Our approach: Clef.We introduce CLEF (Competition-Level Ef-
fective Feedback), a new tool that generates feedback automatically
for competition-level problems by repairing errors in programmers’
incorrect submissions. Clef learns the repair patterns that it uses by
analyzing the repairs that other programmers made for the same
problem across their submission histories. Clef applies the patterns
that it learns to target programs outside the database to generate
candidate repaired programs.
Main technical challenges in designing Clef. The main techni-
cal challenge for Clef is having an effective method for learning how
programmers repair errors in their own submissions. The repair pat-
terns that Clef needs to learn range from small statement-level fixes
to algorithm-level control flow redesigns. Other data-driven feed-
back generators cannot alter the control flow of a program [18, 44],
so large-scale algorithm-level changes, precisely the kind of changes
that incorrect submissions for competition-level problems often
require, are impossible for them to make. Clef employs two tech-
niques that no other feedback generator has used previously:

• We introduce merge trees, a new data structure for encoding
both statement-level and algorithm-level changes between
incorrect programs and corrected versions of the same pro-
grams.

• We propose a new matching and repairing algorithm that
takes advantage of similarities between the target program
and programs in the database. With the new algorithm, Clef
can repair incorrect submissions even if the errors in the
submission have no exact matches in the database.

Evaluation. To evaluate our tool, we have run Clef on thousands of
submissions for six real-world competitive programming problems
obtained from Codeforces. Clef provides feedback successfully for
41.8% of the incorrect solutions overall. Whenever the database
contains both incorrect submissions and a correct submission for
an individual user, we have Clef attempt to fix the incorrect sub-
missions without seeing the correct version, and then we compare
Clef’s repaired version to the real user’s correct version in terms
of program editing distance. In 40.6% of the cases, Clef generates a
repaired program that is syntactically closer to the original incor-
rect submission than the user’s own corrected version is. For the
cases where a user made incorrect submissions but never made a

Automated Feedback Generation for Competition-Level Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

correct submission, Clef repairs the user’s incorrect submissions
successfully 34.1% of the time.

In summary, we make the following contributions:

• We conduct a survey to assess the characteristics and chal-
lenges of competitive programming.

• We present a data-driven tool, Clef, that generates feed-
back for users’ incorrect submissions automatically using its
knowledge of how other users repair their own programs.

• We propose a new data structure for capturing both small
and large changes in repaired submissions.

• We evaluate Clef on real-world competitive programming
problems. For the incorrect submissions that were later re-
paired by the same user, Clef provides correct repairs 49.4%
of the time. In 40.6% of these cases, Clef generates repaired
programs that are closer to the original incorrect submission
than the user’s own correct submission. For the incorrect
submissions that were never repaired by their authors, Clef
provides correct repairs 34.1% of the time.

2 UNDERSTANDING COMPETITIVE
PROGRAMMING

In this section, we present our survey of real-world competitive
programming. We illustrate the challenges involved with solving
competition-level problems through some concrete examples, and
we discuss the implications that drive the design of Clef.

In a programming competition, a contestant writes a program to
perform a specific task and submits the code to an online evaluation
platform. The platform compiles the program, runs it on some pre-
designed test cases, and reports one of the following outcomes:

• Accepted. The submission produces the correct output for
every test and never violates the time and memory limits.

• Compile-Time Error. The submission has a compilation
error. Most programs with syntax errors fall into this group.

• Runtime Error. The submission encounters an error at
runtime for a test. Common errors include buffer overflow
and invalid array indices.

• Time Limit Exceeded. The program surpasses the execu-
tion time limit on a test.

• Memory Limit Exceeded. The program surpasses themem-
ory usage limit on a test.

• Wrong Answer. The program returns an incorrect output
for a test.

• Other. A non-deterministic error, such as a network outage.

The major sources of difficulty for competition-level problems
are categorically different from the sources of difficulty for intro-
level problems. The aim of a competition-level problem’s design
is not to teach contestants how to write programs but to push
contestants to the limits of their knowledge. We now highlight
some of the patterns in competition-level problems’ designs.

Pattern 1: Challenging Problem Descriptions. The first step
in solving a competition-level problem is converting the natural-
language problem description into an idea for an algorithm. Intro-
level programming problems generally have short, straightforward

descriptions, but competition-level problems can have lengthy de-
scriptions designed to mislead contestants. The length of a chal-
lenging problem description comes not from insignificant clutter
but from complicated explanations of problem details meant to test
how well programmers can bridge the gap between an end goal
and an algorithm to accomplish it. For instance, consider Problem
405A from Codeforces:4

Automated Feedback Generation for Competition-Level Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

correct submission, Clef repairs the user’s incorrect submissions
successfully 34.1% of the time.

In summary, we make the following contributions:

• We conduct a survey to assess the characteristics and chal-
lenges of competitive programming.

• We present a data-driven tool, Clef, that generates feed-
back for users’ incorrect submissions automatically using its
knowledge of how other users repair their own programs.

• We propose a new data structure for capturing both small
and large changes in repaired submissions.

• We evaluate Clef on real-world competitive programming
problems. For the incorrect submissions that were later re-
paired by the same user, Clef provides correct repairs 50.0%
of the time. In 40.6% of these cases, Clef generates repaired
programs that are closer to the original incorrect submission
than the user’s own correct submission. For the incorrect
submissions that were never repaired by their authors, Clef
provides correct repairs 34.1% of the time.

2 UNDERSTANDING COMPETITIVE
PROGRAMMING

In this section, we present our survey of real-world competitive
programming. We illustrate the challenges involved with solving
competition-level problems through some concrete examples, and
we discuss the implications that drive the design of Clef.

In a programming competition, a contestant writes a program to
perform a specific task and submits the code to an online evaluation
platform. The platform compiles the program, runs it on some pre-
designed test cases, and reports one of the following outcomes:

• Accepted. The submission produces the correct output for
every test and never violates the time and memory limits.

• Compile-Time Error. The submission has a compilation
error. Most programs with syntax errors fall into this group.

• Runtime Error. The submission encounters an error at
runtime for a test. Common errors include buffer overflow
and invalid array indices.

• Time Limit Exceeded. The program surpasses the execu-
tion time limit on a test.

• Memory Limit Exceeded. The program surpasses themem-
ory usage limit on a test.

• Wrong Answer. The program returns an incorrect output
for a test.

• Other. A non-deterministic error, such as a network outage.

The major sources of difficulty for competition-level problems
are categorically different from the sources of difficulty for intro-
level problems. The aim of a competition-level problem’s design
is not to teach contestants how to write programs but to push
contestants to the limits of their knowledge. We now highlight
some of the patterns in competition-level problems’ designs.

Pattern 1: Challenging Problem Descriptions. The first step
in solving a competition-level problem is converting the natural-
language problem description into an idea for an algorithm. Intro-
level programming problems generally have short, straightforward

descriptions, but competition-level problems can have lengthy de-
scriptions designed to mislead contestants. The length of a chal-
lenging problem description comes not from insignificant clutter
but from complicated explanations of problem details meant to test
how well programmers can bridge the gap between an end goal
and an algorithm to accomplish it. For instance, consider Problem
405A from Codeforces:4

A box contains 𝑛 columns of toy cubes arranged
in a line. Initially, gravity pulls all of the cubes
downward, but, after the cubes are settled in place,
gravity switches to pulling them to the right side
of the box instead. The input is the initial config-
uration of the cubes in the box, and the goal is
to print the configuration of the box after gravity
changes. The sample case example provided by
Codeforces is shown in Subfigure 1a in Figure 1.

The prompt of Problem 405A is designed to test programmers’
ability to reduce a complex problem to a well-known simple algo-
rithm, namely sorting. Attempting to write a brute-force imple-
mentation that treats the cubes as distinct entities is a tedious and
error-prone process. A key insight for solving the problem is the
fact that, when gravity changes, the highest columns always appear
at the right end of the box and are of the same height as the highest
columns at the start. Subfigure 1b in Figure 1 illustrates this. The
possibility of reducing the problem to sorting a one-dimensional
array becomes clear after a programmer notices how the columns
behave.
Pattern 2: Challenging Implementation Details. Not every
competition-level programming problem is a simple task hidden
behind a complex description. Often, implementing an effective al-
gorithm for the problem is a genuinely difficult task involvingminor
details that are easy to mishandle. Problem 579A from Codeforces5
is one such problem:

Start with an empty box. Each morning, you can
put any number of bacteria into the box. Each
night, every bacterium in the box will split into
two bacteria. To get exactly 𝑥 (1 ≤ 𝑥 ≤ 109) bacteria
in the box at some moment, what is the minimum
number of bacteria you need to put into the box
across some number of days?

An important detail to notice is the fact that every bacterium
placed in the box will become 2𝑛 bacteria after 𝑛 days. What the
problem really requires is an algorithm that can divide one integer
into a sum of powers of two. A natural implementation for this
algorithm is to count the number of ones that appear in the binary
representation of 𝑥 . Using the provided integer representation of 𝑥
makes this easy, but a program that converts 𝑥 into a binary string
instead to count the number of ones can fall victim to certain errors

4https://codeforces.com/contest/405/problem/A
5https://codeforces.com/problemset/problem/579/A

The prompt of Problem 405A is designed to test programmers’
ability to reduce a complex problem to a well-known simple algo-
rithm, namely sorting. Attempting to write a brute-force imple-
mentation that treats the cubes as distinct entities is a tedious and
error-prone process. A key insight for solving the problem is the
fact that, when gravity changes, the highest columns always appear
at the right end of the box and are of the same height as the highest
columns at the start. Subfigure 1b in Figure 1 illustrates this. The
possibility of reducing the problem to sorting a one-dimensional
array becomes clear after a programmer notices how the columns
behave.
Pattern 2: Challenging Implementation Details. Not every
competition-level programming problem is a simple task hidden
behind a complex description. Often, implementing an effective al-
gorithm for the problem is a genuinely difficult task involvingminor
details that are easy to mishandle. Problem 579A from Codeforces5
is one such problem:

Automated Feedback Generation for Competition-Level Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

correct submission, Clef repairs the user’s incorrect submissions

successfully 34.1% of the time.

In summary, we make the following contributions:

• We conduct a survey to assess the characteristics and chal-

lenges of competitive programming.

• We present a data-driven tool, Clef, that generates feed-

back for users’ incorrect submissions automatically using its

knowledge of how other users repair their own programs.

• We propose a new data structure for capturing both small

and large changes in repaired submissions.

• We evaluate Clef on real-world competitive programming

problems. For the incorrect submissions that were later re-

paired by the same user, Clef provides correct repairs 50.0%

of the time. In 40.6% of these cases, Clef generates repaired

programs that are closer to the original incorrect submission

than the user’s own correct submission. For the incorrect

submissions that were never repaired by their authors, Clef

provides correct repairs 34.1% of the time.

2 UNDERSTANDING COMPETITIVE
PROGRAMMING

In this section, we present our survey of real-world competitive

programming. We illustrate the challenges involved with solving

competition-level problems through some concrete examples, and

we discuss the implications that drive the design of Clef.

In a programming competition, a contestant writes a program to

perform a specific task and submits the code to an online evaluation

platform. The platform compiles the program, runs it on some pre-

designed test cases, and reports one of the following outcomes:

• Accepted. The submission produces the correct output for

every test and never violates the time and memory limits.

• Compile-Time Error. The submission has a compilation

error. Most programs with syntax errors fall into this group.

• Runtime Error. The submission encounters an error at

runtime for a test. Common errors include buffer overflow

and invalid array indices.

• Time Limit Exceeded. The program surpasses the execu-

tion time limit on a test.

• Memory Limit Exceeded. The program surpasses themem-

ory usage limit on a test.

• Wrong Answer. The program returns an incorrect output

for a test.

• Other. A non-deterministic error, such as a network outage.

The major sources of difficulty for competition-level problems

are categorically different from the sources of difficulty for intro-

level problems. The aim of a competition-level problem’s design

is not to teach contestants how to write programs but to push

contestants to the limits of their knowledge. We now highlight

some of the patterns in competition-level problems’ designs.

Pattern 1: Challenging Problem Descriptions. The first step
in solving a competition-level problem is converting the natural-

language problem description into an idea for an algorithm. Intro-

level programming problems generally have short, straightforward

descriptions, but competition-level problems can have lengthy de-

scriptions designed to mislead contestants. The length of a chal-

lenging problem description comes not from insignificant clutter

but from complicated explanations of problem details meant to test

how well programmers can bridge the gap between an end goal

and an algorithm to accomplish it. For instance, consider Problem

405A from Codeforces:
4

A box contains 𝑛 columns of toy cubes arranged
in a line. Initially, gravity pulls all of the cubes
downward, but, after the cubes are settled in place,
gravity switches to pulling them to the right side
of the box instead. The input is the initial config-
uration of the cubes in the box, and the goal is
to print the configuration of the box after gravity
changes. The sample case example provided by
Codeforces is shown in Subfigure 1a in Figure 1.

The prompt of Problem 405A is designed to test programmers’

ability to reduce a complex problem to a well-known simple algo-

rithm, namely sorting. Attempting to write a brute-force imple-

mentation that treats the cubes as distinct entities is a tedious and

error-prone process. A key insight for solving the problem is the

fact that, when gravity changes, the highest columns always appear

at the right end of the box and are of the same height as the highest

columns at the start. Subfigure 1b in Figure 1 illustrates this. The

possibility of reducing the problem to sorting a one-dimensional

array becomes clear after a programmer notices how the columns

behave.

Pattern 2: Challenging Implementation Details. Not every
competition-level programming problem is a simple task hidden

behind a complex description. Often, implementing an effective al-

gorithm for the problem is a genuinely difficult task involvingminor

details that are easy to mishandle. Problem 579A from Codeforces
5

is one such problem:

Start with an empty box. Each morning, you can
put any number of bacteria into the box. Each
night, every bacterium in the box will split into
two bacteria. To get exactly 𝑥 (1 ≤ 𝑥 ≤ 10

9) bacteria
in the box at some moment, what is the minimum
number of bacteria you need to put into the box
across some number of days?

An important detail to notice is the fact that every bacterium

placed in the box will become 2
𝑛
bacteria after 𝑛 days. What the

problem really requires is an algorithm that can divide one integer

into a sum of powers of two. A natural implementation for this

algorithm is to count the number of ones that appear in the binary

representation of 𝑥 . Using the provided integer representation of 𝑥

makes this easy, but a program that converts 𝑥 into a binary string

instead to count the number of ones can fall victim to certain errors

4
https://codeforces.com/contest/405/problem/A

5
https://codeforces.com/problemset/problem/579/A

An important detail to notice is the fact that every bacterium
placed in the box will become 2𝑛 bacteria after 𝑛 days. What the
problem really requires is an algorithm that can divide one integer
into a sum of powers of two. A natural implementation for this
algorithm is to count the number of ones that appear in the binary
representation of 𝑥 . Using the provided integer representation of 𝑥
makes this easy, but a program that converts 𝑥 into a binary string
instead to count the number of ones can fall victim to certain errors
4https://codeforces.com/contest/405/problem/A
5https://codeforces.com/problemset/problem/579/A

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jialu Zhang, De Li, John C. Kolesar, Hanyuan Shi, and Ruzica PiskacASE ’22, October 10–14, 2022, Rochester, MI, USA Jialu Zhang, De Li, John C. Kolesar, Hanyuan Shi, and Ruzica Piskac

(a) Original Sample Illustration (b) Required New Understanding

Figure 1: Subfigure 1a is the original sample illustration from Codeforces. The initial configuration of the cubes in the box
appears on the left, and the final configuration appears on the right. The cubes whose positions change are highlighted in
orange. The top cube of the first column falls to the top of the last column, the top cube of the second column falls to the top of
the third column, and the middle cube of the first column falls to the top of the second column. Subfigure 1b shows the same
example input but highlights a different detail. The tallest column at the end is of the same height as the tallest column at the
start, but it appears at the right end of the box. The number of columns of a given height is preserved, so the two-dimensional
gravity flip problem reduces to one-dimensional array sorting.

if implemented carelessly. String operations may misinterpret the
base-2 string as a base-10 string, and this can lead to incorrect
answers or even overflow errors.6 To avoid overflow errors, a better
program for Problem 579A never converts 𝑥 into an alternative
format. Instead, it operates directly on the binary representation of
the integer. It right-shifts 𝑥 repeatedly one bit at a time and counts
the number of iterations where the right-shifted version of 𝑥 is odd:
while (x > 0){

if (x & 1) r += 1;
x >>= 1;

}

Pattern 3: Challenging Efficiency Requirements. For other
problems, meeting the evaluation suite’s efficiency requirements is
the main source of difficulty. Problem 1475A, shown in Section 1,
is an example of this.

3 MOTIVATING EXAMPLES
Effective feedback generation for competition-level code requires
the ability to apply complex changes to incorrect submissions.
This includes modifying programs’ control flow and making major
statement-level alterations. Along with the ability to perform com-
plex modifications, high repair quality is another priority for Clef:
it returns the smallest repairs that it can find. To illustrate the repair
process that Clef follows, we use a number of real submissions for
Problem 579A from Codeforces as examples. The prompt for the
problem appears in the discussion of Pattern 2 in Section 2.
Incorrect program needs control flow changes. An example
of a control flow modification that Clef applies appears in Figure 2.
The original incorrect submission made by a user for Problem 579A
appears in Subfigure 2a. The high-level design of the implementa-
tion is correct, but the control flow needs correction. Computing
the number of ones in the binary representation of the integer x re-
quires a loop rather than a conditional. Other users in the database
repaired their programs by making a similar control flow change
(converting if to while), so Clef applies the same repair in Sub-
figure 2b. In this situation, Clef generates a high-quality repair
that not only passes all of the test cases but also makes minimal
changes to the structure of the original incorrect program. The
6https://stackoverflow.com/questions/52548304/converting-decimal-to-binary-with-
long-integer-values-c

if ((x/2)!=0)
{
if ((x%2)==1)

c++;
x = x/2;

}
printf("%lld",c+1);

(a) Incorrect Program

while ((x/2)!=0)
{
if ((x%2)==1)
c++;

x = x/2;
}
printf("%lld",c+1);

(b) Clef’s Repair

while(x)
{
if ((X%2)==1)
c++;

x = x/2;
}
printf("%lld",c);

(c) User’s Repair

Figure 2: An example repair involving control flow modifica-
tion. The differences between the programs are highlighted
in red. The variable x is the input for the program, represent-
ing the desired number of bacteria to have in the end. The
variable c is the output, the number of bacteria that need to
be inserted.

while (x>0)
{
if (x%2==0)
u++;

x = x/2;
}
printf("%d", u);

(a) Incorrect Program

while (x>0)
{
if (x%2)

u++;
x = x/2;

}
printf("%d", u);

(b) Clef’s Repair

while (x!=0)
{
u += x%2;
x /= 2;

}
printf("%d",u);

(c) User’s Repair

Figure 3: A example repair involving a statement-level
change. The differences between the programs are high-
lighted in red. The variable x is the input to this program,
and u is the output.

same user’s own fix for the problem appears in Subfigure 2c. If we
use the Zhang-Shasha algorithm [51] to measure tree edit distances,
the repair generated by Clef has a distance of 1 from the original
flawed program, whereas the user’s own repair has a distance of 6
from the original program.
Incorrect program needs statement-level changes. In addition
to making algorithm-level control flow changes, Clef is able to
generate repairs that require small statement-level changes. Figure 3
shows an example of a statement-level repair. The control flow in
the original submission is correct, but the guard in the if statement

Figure 1: Subfigure 1a is the original sample illustration from Codeforces. The initial configuration of the cubes in the box
appears on the left, and the final configuration appears on the right. The cubes whose positions change are highlighted in
orange. The top cube of the first column falls to the top of the last column, the top cube of the second column falls to the top of
the third column, and the middle cube of the first column falls to the top of the second column. Subfigure 1b shows the same
example input but highlights a different detail. The tallest column at the end is of the same height as the tallest column at the
start, but it appears at the right end of the box. The number of columns of a given height is preserved, so the two-dimensional
gravity flip problem reduces to one-dimensional array sorting.

if implemented carelessly. String operations may misinterpret the
base-2 string as a base-10 string, and this can lead to incorrect
answers or even overflow errors.6 To avoid overflow errors, a better
program for Problem 579A never converts 𝑥 into an alternative
format. Instead, it operates directly on the binary representation of
the integer. It right-shifts 𝑥 repeatedly one bit at a time and counts
the number of iterations where the right-shifted version of 𝑥 is odd:
while (x > 0){

if (x & 1) r += 1;
x >>= 1;

}

Pattern 3: Challenging Efficiency Requirements. For other
problems, meeting the evaluation suite’s efficiency requirements is
the main source of difficulty. Problem 1475A, shown in Section 1,
is an example of this.

3 MOTIVATING EXAMPLES
Effective feedback generation for competition-level code requires
the ability to apply complex changes to incorrect submissions.
This includes modifying programs’ control flow and making major
statement-level alterations. Along with the ability to perform com-
plex modifications, high repair quality is another priority for Clef:
it returns the smallest repairs that it can find. To illustrate the repair
process that Clef follows, we use a number of real submissions for
Problem 579A from Codeforces as examples. The prompt for the
problem appears in the discussion of Pattern 2 in Section 2.
Incorrect program needs control flow changes. An example
of a control flow modification that Clef applies appears in Figure 2.
The original incorrect submission made by a user for Problem 579A
appears in Subfigure 2a. The high-level design of the implementa-
tion is correct, but the control flow needs correction. Computing
the number of ones in the binary representation of the integer x re-
quires a loop rather than a conditional. Other users in the database
repaired their programs by making a similar control flow change
(converting if to while), so Clef applies the same repair in Sub-
figure 2b. In this situation, Clef generates a high-quality repair that
not only passes all of the test cases but also makes minimal changes
to the structure of the original incorrect program. The same user’s
own fix for the problem appears in Subfigure 2c. If we use the
6https://stackoverflow.com/questions/52548304/converting-decimal-to-binary-with-
long-integer-values-c

if ((x/2)!=0)
{
if ((x%2)==1)

c++;
x = x/2;

}
printf("%lld",c+1);

(a) Incorrect Program

while ((x/2)!=0)
{
if ((x%2)==1)
c++;

x = x/2;
}
printf("%lld",c+1);

(b) Clef’s Repair

while(x)
{
if ((x%2)==1)
c++;

x = x/2;
}
printf("%lld",c);

(c) User’s Repair

Figure 2: An example repair involving control flow modifica-
tion. The differences between the programs are highlighted
in red. The variable x is the input for the program, represent-
ing the desired number of bacteria to have in the end. The
variable c is the output, the number of bacteria that need to
be inserted.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jialu Zhang, De Li, John C. Kolesar, Hanyuan Shi, and Ruzica Piskac

(a) Original Sample Illustration (b) Required New Understanding

Figure 1: Subfigure 1a is the original sample illustration from Codeforces. The initial configuration of the cubes in the box
appears on the left, and the final configuration appears on the right. The cubes whose positions change are highlighted in
orange. The top cube of the first column falls to the top of the last column, the top cube of the second column falls to the top of
the third column, and the middle cube of the first column falls to the top of the second column. Subfigure 1b shows the same
example input but highlights a different detail. The tallest column at the end is of the same height as the tallest column at the
start, but it appears at the right end of the box. The number of columns of a given height is preserved, so the two-dimensional
gravity flip problem reduces to one-dimensional array sorting.

if implemented carelessly. String operations may misinterpret the
base-2 string as a base-10 string, and this can lead to incorrect
answers or even overflow errors.6 To avoid overflow errors, a better
program for Problem 579A never converts 𝑥 into an alternative
format. Instead, it operates directly on the binary representation of
the integer. It right-shifts 𝑥 repeatedly one bit at a time and counts
the number of iterations where the right-shifted version of 𝑥 is odd:
while (x > 0){

if (x & 1) r += 1;
x >>= 1;

}

Pattern 3: Challenging Efficiency Requirements. For other
problems, meeting the evaluation suite’s efficiency requirements is
the main source of difficulty. Problem 1475A, shown in Section 1,
is an example of this.

3 MOTIVATING EXAMPLES
Effective feedback generation for competition-level code requires
the ability to apply complex changes to incorrect submissions.
This includes modifying programs’ control flow and making major
statement-level alterations. Along with the ability to perform com-
plex modifications, high repair quality is another priority for Clef:
it returns the smallest repairs that it can find. To illustrate the repair
process that Clef follows, we use a number of real submissions for
Problem 579A from Codeforces as examples. The prompt for the
problem appears in the discussion of Pattern 2 in Section 2.
Incorrect program needs control flow changes. An example
of a control flow modification that Clef applies appears in Figure 2.
The original incorrect submission made by a user for Problem 579A
appears in Subfigure 2a. The high-level design of the implementa-
tion is correct, but the control flow needs correction. Computing
the number of ones in the binary representation of the integer x re-
quires a loop rather than a conditional. Other users in the database
repaired their programs by making a similar control flow change
(converting if to while), so Clef applies the same repair in Sub-
figure 2b. In this situation, Clef generates a high-quality repair
that not only passes all of the test cases but also makes minimal
changes to the structure of the original incorrect program. The
6https://stackoverflow.com/questions/52548304/converting-decimal-to-binary-with-
long-integer-values-c

if ((x/2)!=0)
{
if ((x%2)==1)

c++;
x = x/2;

}
printf("%lld",c+1);

(a) Incorrect Program

while ((x/2)!=0)
{
if ((x%2)==1)
c++;

x = x/2;
}
printf("%lld",c+1);

(b) Clef’s Repair

while(x)
{
if ((X%2)==1)
c++;

x = x/2;
}
printf("%lld",c);

(c) User’s Repair

Figure 2: An example repair involving control flow modifica-
tion. The differences between the programs are highlighted
in red. The variable x is the input for the program, represent-
ing the desired number of bacteria to have in the end. The
variable c is the output, the number of bacteria that need to
be inserted.

while (x>0)
{
if (x%2==0)
u++;

x = x/2;
}
printf("%d", u);

(a) Incorrect Program

while (x>0)
{
if (x%2)

u++;
x = x/2;

}
printf("%d", u);

(b) Clef’s Repair

while (x!=0)
{
u += x%2;
x /= 2;

}
printf("%d",u);

(c) User’s Repair

Figure 3: A example repair involving a statement-level
change. The differences between the programs are high-
lighted in red. The variable x is the input to this program,
and u is the output.

same user’s own fix for the problem appears in Subfigure 2c. If we
use the Zhang-Shasha algorithm [51] to measure tree edit distances,
the repair generated by Clef has a distance of 1 from the original
flawed program, whereas the user’s own repair has a distance of 6
from the original program.
Incorrect program needs statement-level changes. In addition
to making algorithm-level control flow changes, Clef is able to
generate repairs that require small statement-level changes. Figure 3
shows an example of a statement-level repair. The control flow in
the original submission is correct, but the guard in the if statement

Figure 3: A example repair involving a statement-level
change. The differences between the programs are high-
lighted in red. The variable x is the input to this program,
and u is the output.

Zhang-Shasha algorithm [51] to measure tree edit distances, the
repair generated by Clef has a distance of 1 from the original flawed
program, whereas the user’s own repair has a distance of 6 from
the original program.
Incorrect program needs statement-level changes. In addition
to making algorithm-level control flow changes, Clef is able to
generate repairs that require small statement-level changes. Figure 3
shows an example of a statement-level repair. The control flow in
the original submission is correct, but the guard in the if statement
contains a numerical error. The repair that Clef produces for the
submission appears in Subfigure 3b. The Zhang-Shasha algorithm
gives the new program generated by Clef a tree edit distance of

Automated Feedback Generation for Competition-Level Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

only 2 from the original program. Although this repair is not the
smallest possible repair, which would be changing x%2==0 to
x%2==1, Clef still generates a repair that is closer to the user’s
original incorrect submission than the user’s own repaired program
is. The user’s own correction of the program involves three major
changes: changing the guard in the while statement, removing
the if statement inside the while loop, and computing the output
variable u differently by adding the remainder of x mod 2 to it in
each loop iteration.

4 SYSTEM DESCRIPTION
We design and build Clef, a tool that can generate repairs for
competition-level code automatically by learning the ways that
users repair their own programs. Figure 4 gives an overview of
Clef’s architecture. It consists of three main modules: (1) The pre-
processor, described in Section 4.1, takes the database programs as
input, parses them, and generates abstract syntax trees for them. (2)
The pattern learner, described in Section 4.2, uses a new data struc-
ture, merge trees, to represent the algorithm-level and statement-
level changes that users in the database apply to their own programs
over time. (3) The repair generator, described in Section 4.3, applies
program transformation patterns to the incorrect target program
to generate repair candidates, and it also validates the candidates
with the provided test suite for the problem.

4.1 Preprocessor
The preprocessor parses all of the programs in the database into
ASTs offline for later use in repair pattern learning. The preproces-
sor groups the program ASTs into pairs of the form (𝑖, 𝑐), where
𝑖 and 𝑐 are ASTs for an incorrect program and a correct program,
respectively, written by the same user. If a user made multiple in-
correct or correct submissions, the preprocessor makes program
pairs for all of the possible combinations. It also discards programs
that have syntax errors in this stage.

4.2 Pattern Learner
After obtaining the program pairs from the preprocessor, Clef pro-
duces a collection of program transformation patterns based on the
changes between the incorrect and correct programs. The program
transformation patterns fall into two categories: additions and dele-
tions. Clef uses a merge tree to represent the AST changes that
occur between the incorrect and correct versions of a program.
Merge trees. A merge tree encodes the differences between two
abstract syntax trees. An example merge tree appears in Figure 5.
The main structure of a merge tree resembles the unchanged parts
of the two ASTs being compared (node 0, node 1 and node 2) , but
the merge tree also includes special nodes that represent additions
(node 5) and deletions of sub-trees (node 3 and node 4).

An important characteristic of merge trees is their generality:
they can match a variety of patterns in ordinary ASTs rather than
only a single pattern. For example, if the new incorrect version of a
program contains a node 3 where the correct version contains a
different node 5, the merge tree for the transformation can apply
to ASTs that contain 3, 5, (3;5), (5;3), or neither statement, as
long as the surrounding parts of the AST bear a sufficiently close
resemblance to the merge tree. In contrast, a simpler encoding of

the transformation [40] would only apply to ASTs that contain 3.
The merge tree’s ability to be applied to any program that contains
a combination of the two statements allows it to cover a much
larger range of programs than a simpler encoding does.
Computing program differences. The standard approach for
identifying differences between two programs is to apply the Zhang-
Shasha algorithm directly [51] to compute the edits needed to con-
vert one AST into the other. Multiple state-of-the-art intro-level
feedback generators follow this approach [40, 44]. However, the
Zhang-Shasha algorithm on its own is not the best method for com-
puting program differences for competition-level code. First, the
Zhang-Shasha algorithm runs in O(𝑚2𝑛2) time, where𝑚 and 𝑛 are
the numbers of nodes in the two input trees. A faster alternative
that involves flattening is possible, as we will explain later.

The second and more important reason for not using the Zhang-
Shasha algorithm on full program ASTs is that the algorithm treats
every node in a tree as having equal weight. The Zhang-Shasha
algorithm is a general-purpose algorithm for trees of any kind, not
just program ASTs, so it pays no attention to the semantic signif-
icance of the edits it uses for measuring distance. In the case of
program ASTs, not all nodes deserve equal weight: some node mod-
ifications are more significant than others. For example, changing
an if node to a while node generally qualifies as a major change
because it alters the control flow of a program. A method for mea-
suring the edit distance between two programs should count such
a control flow change as having a higher impact than changing an
x=1 statement to x=0. When we compute tree edit distances, we
assign a higher cost to control flow edits than to other changes.

Algorithm 1 Learning Program Transformations
Input: 𝑃𝑖 : User’s incorrect program submission (AST).
Input: 𝑃𝑐 : User’s correct program submission (AST).
Output: patternPool : A set of program transformation patterns
that reflect the changes that users made in repairing their own
programs.
1: procedure learnTransformation(𝑃𝑖 , 𝑃𝑐)
2: patternPool = []
3: alignedCF, unmatchedCF := ControlFlowAlign(𝑃𝑖 , 𝑃𝑐)
4: for (𝑇𝑖 ,𝑇𝑐) in alignedCF do
5: 𝑓 𝑙𝑎𝑡𝐴𝑆𝑇𝑖 , 𝑓 𝑙𝑎𝑡𝐴𝑆𝑇𝑐 := Flatten(𝑇𝑖 ,𝑇𝑐)
6: edits := Zhang-Shasha(𝑓 𝑙𝑎𝑡𝐴𝑆𝑇𝑖 , 𝑓 𝑙𝑎𝑡𝐴𝑆𝑇𝑐)
7: mergeTree += merge(edits, 𝑓 𝑙𝑎𝑡𝐴𝑆𝑇𝑖 , 𝑓 𝑙𝑎𝑡𝐴𝑆𝑇𝑐)
8: for (𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝐶𝐹𝑖) in 𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐶𝐹 do
9: 𝑚𝑒𝑟𝑔𝑒𝑇𝑟𝑒𝑒 := augment(𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝐶𝐹𝑖 ,𝑚𝑒𝑟𝑔𝑒𝑇𝑟𝑒𝑒)
10: patternPool += mergeTree

return patternPool

For Clef, we designed a custom algorithm, shown as Algorithm 1,
that computes the program transformation patterns between the
incorrect and correct versions of a program. To detect algorithm-
level changes between the two versions, Clef uses top-down control
flow alignment. The nodes that count as control flow nodes for our
purposes are if, while, and for statements as well as function
calls. Two control flow nodes align if they have the same type (i.e.
they are both if, both while, both for, or both function calls)

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jialu Zhang, De Li, John C. Kolesar, Hanyuan Shi, and Ruzica Piskac

Figure 4: Clef overview. The green blocks are the input that Clef receives from users and the output that it provides for them.
The yellow blocks are the key modules of Clef.

Figure 5: An example of a merge tree. Subfigure (a) is an
incorrect program, and subfigure (b) is its correct version.
Subfigure (c) is the merge tree for the two. Each small circle
represents oneASTnode. The red nodes are deleted, the green
node is inserted, and the black nodes remain the same after
the program transformation.

and they satisfy some extra type-specific conditions for alignment.
Two if statements need to have matching guards or matching
true and false branches. Two while or for statements need to
have matching guards or matching bodies. Two function calls need
to have all of their arguments match. For two sub-expressions to
match in any case, they need to be mostly the same. Variable names
and function names are not required to be the same, but values
of variables and numbers and types of parameters must be. Clef
identifies all of the pairs of control flow nodes that align with each
other and merges their sub-trees.

Control flow nodes in the incorrect program with no matches
in the correct program are regarded as deletions. Correspondingly,
control flow nodes in the correct program with no matches in
the incorrect program are regarded as insertions. Clef uses special
nodes as markers in merge trees to represent these deletions and
insertions. At the end of pattern learning, Clef returns a set of all the
merge trees it generated to use as program transformation patterns.

A minor detail that makes merge tree generation more efficient
is the fact that the merge tree for a control flow node does not
cover changes in the sub-trees of the two versions’ control flow
nodes. We leave the sub-trees for other merge trees to cover. Clef
handles program changes within the current control flow node
by flattening all of the control flow nodes inside its sub-trees and
treating the interior as an empty node. To simplify the process of
computing edits, we run the Zhang-Shasha algorithm only on pairs
of these flattened sub-trees rather than on the full original ASTs
of the incorrect and correct programs. If𝑚 and 𝑛 are the numbers
of nodes of all types in the two input trees and 𝑝 and 𝑞 are the
numbers of control flow nodes in the two input trees, then this
flattening reduces the time complexity of merge tree generation
from O(𝑚2𝑛2) to O(𝑚2𝑛2

𝑝2𝑞2
).

After implementing Clef, we conducted a study of the perfor-
mance gain that comes from our optimization of the Zhang-Shasha
algorithm for merge tree generation. We ran Clef on our full eval-
uation suite twice over, once with our optimization of the Zhang-
Shasha algorithm in place and once without it. We found that, with
our optimization in place, the overall running time of Clef was
about 5% faster on average than it was without the optimization.

4.3 Repair Generator
The repair generator takes the incorrect target program and the
set of merge trees as input, and it returns a repaired version of
the target program. The repair generator’s algorithm consists of
three main steps. First, it converts the incorrect target program
into an AST just as the preprocessor described in Section 4.1 does
for the database programs. Second, the repair generator identifies
merge trees that match the target program and produces candidate
repaired programs by applying transformations based on the merge
trees that match the target program. During this step, variable usage
analysis helps with the removal of spurious candidate programs.
Third, the repair generator validates the candidate programs with
the pre-defined test suite for the problem.

Matching the target program with merge trees. Merge trees
represent the changes that programmers made to their own pro-
grams in the database. The goal of the matching process is to apply
similar program edits to repair the target program. Intuitively, the
repair generator takes advantage of the similarities between the
incorrect target program and the merge trees to generate repairs.

To start, the repair generator analyzes the target program’s AST
and identifies the sub-trees that have a control flow node as their
root. Such a sub-tree matches a merge tree if all of the nodes and
edges of the sub-tree are contained within the merge tree. We allow
the names of variables and functions to be different for different
programs, but the initial values of variables (if applicable) and the
types and parameters of functions are required to be the same for
a match. If the repair generator finds a match between the target
program and a merge tree, it can modify the target program by
performing a repair based on the merge tree. The fact that matching
only requires the merge tree to contain the sub-tree and not the
other way around helps the repair generator to find ways to fix in-
correct submissions in situations where the errors in the submission
have no exact matches in the database. Clef generates a modified
version of the target program by replacing the matched sub-tree
with a new sub-tree based on the merge tree’s transformation.

Replacing a sub-tree using the merge tree’s transformation might
introduce usages of undefined variables. To account for this, the
repair generator tries conservatively fitting different combinations

Automated Feedback Generation for Competition-Level Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

of defined variable names onto the undefined variables that are
inserted. Then it performs variable usage analysis on modified ver-
sions of the target program to remove candidates that are invalid
simply because of their variable usage. The repair generator dis-
cards candidate programs that still contain undefined variables after
variable alignment or define variables without using them. This
filtering reduces the number of candidates to be validated with the
test suite, improving the performance of the repair generator.

Validation. The repair generator validates candidate programs
simply by running the provided test suite on them. As soon as the
repair generator finds a candidate program that passes all of the
tests, it returns that candidate program as output.

Because small repairs are more beneficial for users, we priori-
tize candidates with small transformations over candidates with
large ones for validation. The repair generator starts by applying
only one merge tree to the target program at a time to generate
candidates. If we fail to find a valid candidate program after trying
every option among the individual merge trees, the repair gen-
erator begins creating candidate programs from combinations of
multiple transformations. The repair generator continues trying
progressively larger repairs until it hits a timeout or the number of
test suite runs reaches a preset limit. For our evaluation, we do not
impose a time limit, but we set a limit of 1,000 on the number of
candidate programs to validate with the test suite.

5 EVALUATION
We answer the following questions with our evaluation of Clef:

• How effectively can Clef repair incorrect submissions for
competition-level problems?

• How high is the quality of Clef’s feedback? More specifically,
how closely do the repaired programs that Clef generates
resemble users’ original programs?

• How does Clef’s repair rate on competition-level problems
compare to the repair rates of similar tools?

5.1 Implementation and Experimental Setup
Our implementation of Clef uses a mix of Python and open-source
software libraries. As it is now, Clef operates on C programs.We rely
on pycparser [4], a complete C99 parser, to convert C programs into
abstract syntax trees. Also, we use the Zhang-Shasha algorithm [50]
to compute tree edit distances.

Benchmark Setup. For our evaluation suite, we use six problems
fromCodeforces, theworld’s largest online platform for competitive
programming. Codeforces assigns difficulty scores to its problems,
and we group the problems into three categories based on their
difficulty scores. We categorize problems with a difficulty score
of 800 or less as easy, problems with a score between 800 and
1000 as medium, and problems with a score of at least 1000 as
hard. Each of the six problems that we selected received more than
700 submissions written in C. (Multiple submissions made by the
same user count as distinct.) The number of evaluated problems
and the numbers of submissions for each are on par with existing
work[18, 20, 43]. For each submission, we collected not only the
text of the program but also its execution result, running time,

and memory usage.7 Additionally, we have access to the test suite
used by Codeforces for each of the problems. Table 1 names the six
problems and the specific challenges that each problem presents.

Table 2 provides a breakdown of the six selected competition-
level programming problems. We can see from analyzing the ex-
ecution results for the database programs that 25.6% (2093/8187)
of the submissions were rejected because of errors rather than
incorrect outputs. Among those, 4.4% (359/8187) of the programs
were classified as incorrect because of runtime errors, time limit
violations, or memory limit violations. Furthermore, of the 5597
incorrect submissions, 2921 (52.2%) come from programmers who
never made a correct submission.

Clef aims to provide effective feedback for programmers practic-
ing on competition-level problems. To assess whether Clef meets
this goal, we split the users into two groups for each problem:

• Group One. Some users made incorrect submissions but
never managed to produce a correct submission. Generating
repairs for these users’ programs is generally a challenging
task: since the users never managed to repair their own
programs, their submissions may contain major errors.

• Group Two. Other users made incorrect submissions ini-
tially but then managed to produce a correct submission
afterward on their own. These users’ incorrect submissions
are easier to handle in general: the fact that the users found
a solution eventually means that they were likely close to a
right answer with their earlier incorrect submissions.

For each problem, we perform some cleaning of the database
before we use it as a training set. To clean the database, we discard
all programs with syntax errors and all submissions from users
who solved the problem on their first attempt. Next, we label each
user with a distinct anonymous identifier. After that, we allocate
80% of the users for the training set and 20% for the evaluation
set. Some existing feedback generators use the chronologically
earliest 80% of submissions as the training set and the remaining
20% as the evaluation set [37], but we divide the users at random
instead to avoid skewing the results. The setup of Codeforces makes
problems easier for programmers who submit their programs later:
on Codeforces, users practicing on a specific problem can view every
other user’s submission history for the same problem. Consequently,
there is a risk that programmers who submitted later fixed the
mistakes in their code by copying someone else’s correct submission
rather than by finding a solution on their own. Grouping the users
randomly rather than chronologically allows us to distribute the
users who copied other users’ submissions more fairly between the
training set and the evaluation set, if there are any such users.

5.2 Results
Group One. Table 3 shows Clef’s results for incorrect programs
abandoned by their authors. For this group, Clef has an overall fix
rate of 34.1% across the six problems. Since the programs’ authors
never addressed their mistakes fully on their own, they would ben-
efit from receiving repaired versions of their programs as feedback.
To measure the quality of our repairs for Group One, we introduce
a new metric: the dissimilarity between each target program and

7The owners of Codeforces gave us permission to collect data from the six problems.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jialu Zhang, De Li, John C. Kolesar, Hanyuan Shi, and Ruzica Piskac

Table 1: Six Representative Competition-Level Programming Problems.

Problem
ID

Difficulty
Level

Codeforces Tag Challenges Problem Description

1312A Number Theory Description Given two integers 𝑛 and𝑚, determine whether a convex regular polygon with𝑚 sides can be
inscribed in a convex regular polygon with 𝑛 sides such that their centers and vertices coincide

1519B
Easy

Math Description Given an 𝑛-by-𝑚 grid, with different costs for moving in different directions,
check whether it is possible to reach cell (𝑛,𝑚) with exactly cost 𝑘

1238A Number Theory Algo Design &
Implementation

Given two integers 𝑥 and 𝑦, determine whether there is a prime integer 𝑝
such that subtracting 𝑝 from 𝑥 any number of times makes 𝑥 equal to 𝑦

1295A
Medium

Greedy Description &
Algo Design

Find the largest integer that can be shown on a seven-segment (digital clock)
display that requires no more than 𝑛 segments to be turned on in total

579A Bit Mask Algo Design &
Implementation

Find the minimum number of bacteria that need to be placed into a box over
some number of days in order to have 𝑥 bacteria in the box at some moment

1199B
Hard

Geometry Algo Design &
Implementation

Find the depth of a body of water given the distance that a vertical line
segment extending from the bottom can tilt before being submerged

Table 2: Statistics for the six selected competition-level programming problems. The categorizations for submissions here come
from Codeforces. AC: Accepted, WA: Wrong Answer, CE: Compile-Time Error, RE: Runtime Error, TLE: Time Limit Exceeded,
MLE: Memory Limit Exceeded, OT: Other.

Problem ID # Submissions # AC # WA # CE # RE # TLE # MLE # OT Average LOC
1312A 1160 494 327 301 15 19 3 1 21.1
1519B 724 349 211 137 12 14 1 0 25.1
1238A 1345 303 520 358 39 121 0 4 27.3
1295A 1024 251 349 368 13 40 3 0 33.3
579A 1889 780 758 288 23 36 1 3 19.8
1199B 2045 413 1339 269 18 1 0 5 11.9

Total 8187 2590 3504 1721 120 231 8 13 21.4

the correct programs in the database. To measure dissimilarity, we
compute the minimum tree edit distance between a target program
and any of the correct programs in the database using the Zhang-
Shasha algorithm, and then we divide this distance by the size of the
target program. This dissimilarity metric quantifies the difficulty
of repairing each program: if a program is not syntactically close
to any correct program in the database, generating a repair for it is
difficult, and any repairs found are likely to be large.

Clef generates high-quality repairs for Group One according to
our standard. We define the relative repair size for a problem as
the tree edit distance between a repaired program and its target
program divided by the size of the target program. For three of
the six problems, Clef has an average relative repair size smaller
than the average dissimilarity between the target programs and
the correct programs. The high dissimilarity values for Group One
make the higher average relative repair sizes for the other three
problems understandable. Another important finding is that the
average dissimilarity across all six problems is 0.38, so a typical
target program needs a large portion of its code to be changed to
become identical to any of the correct database programs.

Group Two. Table 4 shows Clef’s results for incorrect programs
later fixed by their authors. Clef has an overall fix rate of 49.4%
across the six problems, which is better than the result for Group
One. Since we have the authors’ own repairs for the programs in
Group Two, we use the authors’ repairs as the ground truth for
assessing the quality of Clef’s feedback. A repair generated by Clef
counts as a high-quality repair if the tree edit distance between
it and the target program is smaller than the tree edit distance

between the user’s own repair and the target program. For four out
of the six problems, more than 50% of the repairs Clef generates are
closer to the target program than the ground truth is, so Clef does
in fact generate high-quality repairs for programs in Group Two.

5.3 Comparison with State-of-the-Art: Clara
To the best of our knowledge, there is no feedback generator for
competition-level problems, so we compare Clef with a feedback
generator for intro-level programming assignments instead. Among
the state-of-the-art data-driven feedback generators for intro-level
problems[18, 43, 44], we selected Clara as our baseline because
Clara is the only state-of-the-art feedback generator that is publicly
available8 and operates on C programs [18].

Clara’s input format is relatively restricted, so we needed to
translate every target program from Codeforces manually into a
format that Clara can accept. We could not perform these transla-
tions automatically because there is too much syntactic variation
among the original programs. An example translation appears in
Figure 6. If a program contains an outer loop, we remove the loop
since many common syntactic patterns for loops cause Clara to run
into errors. Because these loop removals are necessary, we have
the programs take a single line of input rather than a multi-line
input of variable length. For the same reason, we replace all uses
of scanf for reading inputs with function arguments. Apart from
the changes relating to loops and inputs, we kept the reformulated
programs’ semantics as close to the semantics of the originals as

8https://github.com/iradicek/clara

Automated Feedback Generation for Competition-Level Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 3: Evaluation of Clef on incorrect programs abandoned by their authors (Group One). The second column shows the
number of incorrect-correct program pairs in the training set for each problem, not the number of individual programs. The
penultimate column shows the average dissimilarity of the target programs that had a successful repair by Clef. The last
column shows the average dissimilarity of the target programs that Clef failed to generate a successful repair.

Problem
ID

Pairs in
Training Set

Programs
in Test Set

Programs
Repaired

Accuracy
(Repair Rate)

Avg. Relative
Repair Size

Average
Dissimilarity

Avg. Dissimilarity
for Successes

Avg. Dissimilarity
for Failures

1312A 475 90 51 56.7% 0.24 0.26 0.16 0.39
1519B 203 31 12 38.7% 0.38 0.43 0.27 0.53
1238A 1304 316 119 37.7% 0.26 0.40 0.27 0.48
1295A 277 127 38 29.9% 0.86 0.56 0.55 0.57
579A 1654 362 98 27.1% 0.73 0.44 0.41 0.45
1199B 4027 558 82 14.7% 0.15 0.19 0.06 0.21

Table 4: Evaluation of Clef on incorrect programs later repaired by their authors (Group Two). The training set for each problem
is the same as it is in Table 3.

Problem
ID

Programs
in Test Set

Programs
Repaired

Accuracy
(Repair Rate)

High-Quality
Repairs

Avg. Relative
Repair Size

Average
Dissimilarity

Avg. Dissimilarity
for Successes

Avg. Dissimilarity
for Failures

1312A 62 44 71.0% 52.3% 0.19 0.17 0.14 0.21
1519B 71 55 77.5% 7.3% 0.33 0.19 0.12 0.40
1238A 55 34 61.8% 58.8% 0.29 0.34 0.24 0.50
1295A 53 22 41.5% 13.6% 0.54 0.38 0.37 0.39
579A 107 25 23.4% 52.0% 0.53 0.40 0.38 0.41
1199B 176 37 21.0% 59.5% 0.21 0.15 0.08 0.17

Automated Feedback Generation for Competition-Level Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 3: Evaluation of Clef on incorrect programs abandoned by their authors (Group One). The second column shows the
number of incorrect-correct program pairs in the training set for each problem, not the number of individual programs. The
penultimate column shows the average dissimilarity of the target programs that had a successful repair by Clef. The last
column shows the average dissimilarity of the target programs that Clef failed to generate a successful repair.

Problem
ID

Pairs in
Training Set

Programs
in Test Set

Programs
Repaired

Accuracy
(Repair Rate)

Avg. Relative
Repair Size

Average
Dissimilarity

Avg. Dissimilarity
for Successes

Avg. Dissimilarity
for Failures

1312A 475 90 51 56.7% 0.24 0.26 0.16 0.39
1519B 203 31 12 38.7% 0.38 0.43 0.27 0.53
1238A 1304 316 119 37.7% 0.26 0.40 0.27 0.48
1295A 277 127 38 29.9% 0.86 0.56 0.55 0.57
579A 1654 362 98 27.1% 0.73 0.44 0.41 0.45
1199B 4027 558 82 14.7% 0.15 0.19 0.06 0.21

Table 4: Evaluation of Clef on incorrect programs later repaired by their authors (Group Two). The training set for each problem
is the same as it is in Table 3.

Problem
ID

Programs
in Test Set

Programs
Repaired

Accuracy
(Repair Rate)

High-Quality
Repairs

Avg. Relative
Repair Size

Average
Dissimilarity

Avg. Dissimilarity
for Successes

Avg. Dissimilarity
for Failures

1312A 62 44 71.0% 52.3% 0.19 0.17 0.14 0.21
1519B 71 55 77.5% 7.3% 0.33 0.19 0.12 0.40
1238A 55 34 61.8% 58.8% 0.29 0.34 0.24 0.50
1295A 53 22 41.5% 13.6% 0.54 0.38 0.37 0.39
579A 107 25 27.1% 52.0% 0.53 0.40 0.38 0.41
1199B 176 37 21.0% 59.5% 0.21 0.15 0.08 0.17

int main() {
int i, t, m, n;
scanf("%d",&t);
for (i = 0; i < t; i++) {

scanf("%d%d",&n,&m);
if (n%m == 0)

printf("YES");
else

printf("NO");
}
return 0;
}

(a) Clef’s Input

int main(int n, int m) {
if (n%m == 0)

printf("YES");
else

printf("NO");
return 0;
}

(b) Clara’s Input

Figure 6: An example of necessary reformulation.

the programs take a single line of input rather than a multi-line
input of variable length. For the same reason, we replace all uses
of scanf for reading inputs with function arguments. Apart from
the changes relating to loops and inputs, we kept the reformulated
programs’ semantics as close to the semantics of the originals as
possible. To compare Clara and Clef, we ran Clara on the reformu-
lated programs, applied Clara’s suggested edits manually, and then
passed the programs back to Codeforces to evaluate their correct-
ness. The programs passed to Codeforces have Clara’s suggested
edits applied but also have our reformulations undone. More specif-
ically, the programs passed to Codeforces have all of the original
loops and take their arguments with scanf, but they have Clara’s
suggested edits applied to the main loop body. We collected and
reformulated the correct programs in our training set to build the
training set for Clara.

Table 5: Basic Comparison: Clef against Clara

Problem
ID

Programs Clara Accuracy
(Repair Rate)

Clef Accuracy
(Repair Rate)

Improvement

Group
One

1312A 90 43.3% 56.7% 30.9%
1519B 31 29.0% 38.7% 33.4%

Group
Two

1312A 62 48.4% 71.0% 46.7%
1519B 71 49.3% 77.5% 57.2%
1238A 55 7.3% 61.8% 7x
1295A 53 7.5% 41.5% 6x

Table 5 shows the results of the basic comparison between Clef
and Clara. For the comparison, we compare only the repair rates of
the two tools. There is no meaningful way to compare the running
times of the tools because Clef applies its repairs automatically,
whereas Clara simply suggests repairs without applying them itself.
Also, we cannot give a fair comparison of the two tools’ repair
sizes either. Since Clara operates on a database of reformulated
programs that are smaller than the ones that Clef uses directly,
Clara is necessarily limited to a smaller range of possible edits than
Clef is.

We use two easy problems and two medium problems for the
comparison. For the two easy problems, we tested Clef and Clara
on submissions from both Group One and Group Two, but for the
medium problems, we used submissions from Group Two only. For
the two easy problems, 1312A and 1519B, Clef outperforms Clara
by at least 30% in repair accuracy in both Group One and Group
Two. For the easy problems, we found that the main reason why
Clara fails to generate a repair is the tool’s limited language feature
support. Language features that cause Clara to fail include structs,
Typedef, simultaneous array declaration and initialization (such
as a[100]={0}), and some C functions such as strrev.

Figure 6: An example of necessary reformulation.

possible. To compare Clara and Clef, we ran Clara on the reformu-
lated programs, applied Clara’s suggested edits manually, and then
passed the programs back to Codeforces to evaluate their correct-
ness. The programs passed to Codeforces have Clara’s suggested
edits applied but also have our reformulations undone. More specif-
ically, the programs passed to Codeforces have all of the original
loops and take their arguments with scanf, but they have Clara’s
suggested edits applied to the main loop body. We collected and
reformulated the correct programs in our training set to build the
training set for Clara.

Table 5 shows the results of the basic comparison between Clef
and Clara. For the comparison, we compare only the repair rates of
the two tools. There is no meaningful way to compare the running
times of the tools because Clef applies its repairs automatically,
whereas Clara simply suggests repairs without applying them itself.
Also, we cannot give a fair comparison of the two tools’ repair
sizes either. Since Clara operates on a database of reformulated

Table 5: Basic Comparison: Clef against Clara

Problem
ID

Programs Clara Accuracy
(Repair Rate)

Clef Accuracy
(Repair Rate)

Improvement

Group
One

1312A 90 43.3% 56.7% 30.9%
1519B 31 29.0% 38.7% 33.4%

Group
Two

1312A 62 48.4% 71.0% 46.7%
1519B 71 49.3% 77.5% 57.2%
1238A 55 7.3% 61.8% 7x
1295A 53 7.5% 41.5% 5x

programs that are smaller than the ones that Clef uses directly,
Clara is necessarily limited to a smaller range of possible edits than
Clef is.

We use two easy problems and two medium problems for the
comparison. For the two easy problems, we tested Clef and Clara
on submissions from both Group One and Group Two, but for the
medium problems, we used submissions from Group Two only. For
the two easy problems, 1312A and 1519B, Clef outperforms Clara
by at least 30% in repair accuracy in both Group One and Group
Two. For the easy problems, we found that the main reason why
Clara fails to generate a repair is the tool’s limited language feature
support. Language features that cause Clara to fail include structs,
Typedef, simultaneous array declaration and initialization (such
as a[100]={0}), and some C functions such as strrev.

For the two medium problems, 1238A and 1295A, Clef outper-
forms Clara by a wide margin (500% or more). Because of the signif-
icant manual effort required for reformulation and validation, along
with the fact that Clef enjoys such a large performance gain over
Clara on the easy and medium problems, we chose not to evaluate
Clef and Clara on the full suite that we used for Clef alone.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jialu Zhang, De Li, John C. Kolesar, Hanyuan Shi, and Ruzica Piskac

We investigated why Clara fails to generate repairs for medium
problems. Again, Clara suffers from limited language feature sup-
port. For example, for Problem 1238A,9 Clara does not distinguish
between the types int and long long int. However, the dis-
tinction is crucial because the inputs may be as large as 1018 in this
problem. There are incorrect submissions that fail solely because
they use int to take inputs. Clara cannot generate the feedback
that these programs need, namely a change to a variable’s type.

Multiple factors prevent us from performing a full direct compar-
ison. First, we cannot evaluate Clara directly on the same suite of
programs from Codeforces that we used for our evaluation because
Clara does not support the full range of C’s syntax. For example,
Clara cannot translate loop guards of the form while(t−−) into
its internal intermediate representation language. We found that, if
Clara encounters such a loop guard, it may enter an infinite loop
and time out after approximately five seconds.10 The programs that
we collected from Codeforces for problems such as Problem 1312A
and Problem 1519B use loop guards of this form extensively, usually
to iterate through input lines. We believe that this bug is a small
implementation mistake rather than a fundamental limitation of
Clara. Nevertheless, it prevents us from having a fair comparison
of Clara and Clef on the same programs.

Another source of difficulty is the fact that Clara does not ap-
ply program edits on its own automatically. Instead, it provides
feedback in the form of a list of edits for the programmer to make,
expressed in Clara’s low-level intermediate representation. To eval-
uate the correctness of Clara’s feedback, we needed to apply the
suggested edits to each target program manually.

Overall, our comparison between Clara and Clef highlights the
major differences between intro-level and competitive program-
ming. Programming contests test programmers’ knowledge with
language-specific issues, such as numerical types’ ranges in Prob-
lem 1238A, while intro-level programming avoids such material.

5.4 Efficiency
Although efficiency is not our primary goal, we conduct an effi-
ciency analysis to assess the running time of Clef. For the efficiency
tests, we run Clef on a MacBook Pro with an Intel i7 CPU and 16GB
of memory. Table 6 shows that Clef generates repairs for incorrect
programs efficiently. For each of the problems in our main evalua-
tion, we report an average running time based on a sample of 15
runs covering both successful and failed runs. On average, across
the six problems, Clef takes around three minutes to run.

Three minutes may seem like a relatively long running time at
first glance, but, given the setup of practice sessions on platforms
like Codeforces, a three-minute delay for feedback generation is not
a significant impediment to the utility of Clef. Codeforces practice
sessions generally have a two-hour time limit and consist of four
to six problems each,11 so users have twenty minutes on average
to solve an individual problem. Programmers can receive feedback
for a problem multiple times over within that duration. This can
be especially helpful for programmers who would abandon the
problem otherwise after making a few failed attempts.

9https://codeforces.com/problemset/problem/1238/A
10https://github.com/iradicek/clara/issues/31
11https://codeforces.com/contests

Table 6: Clef Average Running Times

Problem ID Average Running Time (s)
1312A 58
1519B 60
1238A 150
1295A 242
579A 53
1199B 26

6 DISCUSSION
State-of-the-art tools. Recent data-driven approaches for feed-
back generation utilize the wisdom of the crowd by selecting donor
programs from their databases [18, 20, 40, 44]. A donor program
is a program that bears a close resemblance to the program to be
repaired. Tools that use donors repair their target programs by
analyzing the differences between a target program and its donors.

State-of-the-art feedback generators choose their donor pro-
grams from a database of programs that are either all correct or
all incorrect. Both options have limitations. Tools that draw their
donors from databases of correct programs [18, 20, 44] operate un-
der the faulty assumption that the target program differs from the
correct database programs only because of the presence of errors
in the program. Tools that draw their donors from databases of
incorrect programs [40] suffer from low success rates because the
mistakes in the donor programs are unlikely to coincide with the
mistakes in the target program.

Clef takes a different approach. Its database includes both cor-
rect programs and incorrect programs, and it draws information
from both sides of the database to produce merge trees that func-
tion like donor programs do for other tools. Merge trees offer a
unique advantage over donor programs: they allow Clef to generate
high-quality repairs in a way that mimics the debugging procedure
that human programmers follow. The structure of a merge tree
represents the changes that a user makes between the different
versions of a program. Clef can learn to imitate the user’s behavior
by observing the differences between an early incorrect version of
the program and the final correct version of the program.
Running Clef on Clara’s evaluation suite. Just as Clara cannot
run directly on Clef’s evaluation suite, Clef cannot run on Clara’s
evaluation suite either. The database of programs used for Clara’s
original evaluation is not publicly available. Even if we did have
access to Clara’s target programs and training data, compatibility
issues would still prevent us from evaluating Clef on Clara’s suite.
Clara’s training set contains only finished correct programs, and
the incorrect target programs are stored only as isolated individual
submissions. Without any version histories for training, Clef cannot
generate fixes because it cannot observe the changes that occur
between the incorrect and correct versions of a program.
Threats to Validity. Clef validates candidate programs by running
the test suite provided by Codeforces on them. Passing every test
within the resource limits is not a guarantee of the correctness
of a program but only a highly likely indicator of its correctness.
A guarantee would require formal verification, which we do not
perform. To our knowledge, this limitation is common to all existing
data-driven feedback generation techniques [18, 20, 30, 40, 44].

Automated Feedback Generation for Competition-Level Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

Currently, Clef only supports feedback generation for C pro-
grams. However, the principles behind the design of Clef are appli-
cable to programs written in any language. Our method for han-
dling control flow nodes does assume C-like syntax, but nothing
else about the underlying algorithm is tailored specifically for C.

7 RELATEDWORK
Competitive programming. Researchers have devoted an in-
creasing amount of attention to competitive programming recently
because of its growing impact on programming training and educa-
tion [12, 23, 38]. The first tool to generate solutions for program-
ming problems with program synthesis comes from Zavershynskyi
et al. [48]. Unfortunately, the tool’s utility is limited significantly
by the fact that it generates solutions only in a custom-made in-
termediate programming language. Hendrycks et al. [19] are the
first to use large language models to generate solutions for com-
petitive programming problems directly in Python. However, their
approach produces solutions successfully less than 20% of the time.
AlphaCode [27] is a significant improvement over the state of the
art [14, 19, 48]. AlphaCode produces programs based on natural-
language descriptions it receives as input. In contests with over
5,000 participants, AlphaCode places among the top 54.3% of par-
ticipants on average [27]. In spite of the advances made in the field
of competitive programming, no existing tool generates feedback
or repairs for incorrect competition-level programs.
Automated feedback generation. Automatic feedback genera-
tion for programming assignments has been a popular topic in pro-
gramming education over the last decade [15, 18, 20, 21, 26, 30, 35–
37, 40, 42–45, 47, 52]. The first tools developed for the task [21, 42]
rely on manual guidance from users, in the form of either reference
solutions [21, 42] or an error model [42] that explicitly defines all
repairs that the tool can make. Because of their heavy reliance on
input from users, the early tools do not qualify as fully automatic.

More recent feedback generators are automatic, and they rely
on data-driven approaches for the task. They learn how to generate
repairs for programs by analyzing programs written by other users.
Tools such as Clara [18], SARFGEN [44], Refactory [20], FAPR [30],
and Cafe [43] use databases of existing correct solutions for a prob-
lem to learn how to repair incorrect programs written for the same
problem. Some of the data-driven tools are limited by their heavy
dependence on syntactic similarities between the target program
and reference solutions from the database. Two of the tools for
imperative languages cannot repair a flawed program unless their
database contains a correct program with exactly the same control
flow as the flawed program [18, 44]. Similarly, one of the tools for
functional programs requires alignment for function call sites [43].
Multiple studies have shown that the assumption that a flawed
program will have an exact control-flow match in the database of
correct programs is too strong to be reliable [20, 25]. Other feedback
generators suffer from different problems, such as the tendency to
enlarge programs excessively with repairs [18, 20], the inability to
fix errors that require changes to multiple parts of a program [40],
and algorithms that ignore programs’ semantics [30, 46].

Furthermore, state-of-the-art feedback generators [18, 43, 44]
cannot generate the complex repairs that flawed competition-level
programs need because the tools’ creators designed them with

intro-level programming assignments in mind. No existing tool
can repair programs that require an algorithm-level redesign, but
merge trees allow Clef to handle the task. The inspiration behind
our usage of merge trees comes from algorithms for semi-structured
merging [10, 13]. More importantly, no existing feedback generator
attempts to make programs more efficient.
Automated program repair. Researchers have studied automated
program repair techniques extensively for the past sixty years [11,
16, 17, 49]. Automated program repair techniques fall into three
main categories: heuristic-based [22, 24, 39], semantics-based [31,
32], and learning-based [28, 29]. Heuristic-based approaches use
some heuristic, such as genetic programming [24], randomiza-
tion [39], or a predefined fitness function [22], to guide a search
procedure to candidate patches for a program. Semantics-based
techniques [9, 31, 32] combine symbolic executionwith SMT solvers
to synthesize repairs. Semantics-based techniques struggle to repair
competition-level code reliably because of the limitations of their
internal design. Programming competitions make heavy use of
floating-point numbers for geometry problems and lists for string
operation problems, both of which are difficult for SMT solvers
to handle effectively. Lastly, learning-based techniques [28, 29, 41]
learn code repair patterns from prior patches.

State-of-the-art automated program repair techniques work best
when used to handle a small number of errors among millions of
lines of code. However, for competition-level code, errors appear
much more frequently relative to the size of users’ programs.

Automatic repair for non-functional program properties (i.e. time
and memory usage) has received a small amount of attention from
researchers previously. However, unlike Clef, prior work in the
area has targeted only specific program patterns [16, 17], such as
unnecessary loop iterations [34] or repeated computations of the
same value [33]. No prior research on the subject aims to improve
the efficiency of competition-level code automatically.

8 CONCLUSION
We present Clef, a tool that generates feedback automatically for
competition-level code. By observing how other users repair their
own programs over time, Clef learns how to create repairs for its
target programs. The improvement in quality that Clef provides
over the standard feedback that programmers receive when practic-
ing on competition-level problems will make online programming
platforms that utilize Clef more user-friendly.

ACKNOWLEDGMENTS
We thank Andong Fan for valuable early feedback and Matt Elacqua
for proofreading. Jialu Zhang is supported in part by NSF grants
CCF-1715387 and CCF-2106845. John C. Kolesar is supported in
part by NSF grant CNS-1565208. Ruzica Piskac is supported in part
by NSF grants CCF-2131476 and CNS-1565208.

REFERENCES
[1] 2022. An example of repairing a faulty submission that need an algorithm-level

redesign. https://stackoverflow.com/questions/65896295/finding-odd-divisors-
with-bit-shifting

[2] 2022. HPE CODEWARS. https://hpecodewars.org/.
[3] 2022. Microsoft Imagine Cup. https://imaginecup.com/.
[4] 2022. pycparser: Complete C99 parser in pure Python. https://github.com/eliben/

pycparser.

https://stackoverflow.com/questions/65896295/finding-odd-divisors-with-bit-shifting
https://stackoverflow.com/questions/65896295/finding-odd-divisors-with-bit-shifting
https://hpecodewars.org/
https://imaginecup.com/
https://github.com/eliben/pycparser
https://github.com/eliben/pycparser

ASE ’22, October 10–14, 2022, Rochester, MI, USA Jialu Zhang, De Li, John C. Kolesar, Hanyuan Shi, and Ruzica Piskac

[5] 2022. The 10 Most Prestigious Programming Contests and Coding Chal-
lenges. https://www.mycplus.com/featured-articles/programming-contests-and-
challenges/.

[6] 2022. The Facebook Hacker Cup. https://www.facebook.com/
codingcompetitions/hacker-cup/.

[7] 2022. The International Collegiate Programming Contest. https://icpc.global/.
[8] 2022. The Yandex Algorithm Cup. https://yandex.com/cup/algorithm/.
[9] Umair Z. Ahmed, Zhiyu Fan, Jooyong Yi, Omar I. Al-Bataineh, and Abhik

Roychoudhury. 2022. Verifix: Verified Repair of Programming Assignments.
ACM Trans. Softw. Eng. Methodol. 31, 4, Article 74 (jul 2022), 31 pages. https:
//doi.org/10.1145/3510418

[10] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and Christian
Kästner. 2011. Semistructured Merge: Rethinking Merge in Revision Control
Systems. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Eu-
ropean Conference on Foundations of Software Engineering (Szeged, Hungary)
(ESEC/FSE ’11). Association for Computing Machinery, New York, NY, USA,
190–200. https://doi.org/10.1145/2025113.2025141

[11] Rohan Bavishi, Harshit Joshi, José Pablo Cambronero Sánchez, Anna Fariha, Sumit
Gulwani, Vu Le, Ivan Radicek, and Ashish Tiwari. 2022. Neurosymbolic Repair
for Low-Code Formula Languages. https://doi.org/10.48550/ARXIV.2207.11765

[12] Aaron Bloomfield and Borja Sotomayor. 2016. A programming contest strategy
guide. In Proceedings of the 47th ACM technical symposium on computing science
education. 609–614.

[13] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluating and
Improving Semistructured Merge. Proc. ACM Program. Lang. 1, OOPSLA, Article
59 (oct 2017), 27 pages. https://doi.org/10.1145/3133883

[14] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish
Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam
McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. https://doi.org/10.48550/ARXIV.2107.03374

[15] Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
Repair with Quantitative Objectives. In Computer Aided Verification - 28th Inter-
national Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II (Lecture Notes in Computer Science, Vol. 9780), Swarat Chaudhuri and
Azadeh Farzan (Eds.). Springer, 383–401. https://doi.org/10.1007/978-3-319-
41540-6_21

[16] Claire Goues, Stephanie Forrest, and Westley Weimer. 2013. Current Challenges
in Automatic Software Repair. Software Quality Journal 21, 3 (sep 2013), 421–443.
https://doi.org/10.1007/s11219-013-9208-0

[17] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
Program Repair. Commun. ACM 62, 12 (nov 2019), 56–65. https://doi.org/10.
1145/3318162

[18] Sumit Gulwani, Ivan Radicek, and Florian Zuleger. 2018. Automated Clustering
and Program Repair for Introductory Programming Assignments. SIGPLAN Not.
53, 4 (June 2018), 465–480. https://doi.org/10.1145/3296979.3192387

[19] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring Coding Challenge Competence With APPS. CoRR
abs/2105.09938 (2021). arXiv:2105.09938 https://arxiv.org/abs/2105.09938

[20] Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roychoudhury. 2019. Re-
Factoring Based Program Repair Applied to Programming Assignments. In 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
388–398.

[21] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani. 2016.
Semi-Supervised Verified Feedback Generation. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Seattle, WA, USA) (FSE 2016). Association for Computing Machinery, New York,
NY, USA, 739–750. https://doi.org/10.1145/2950290.2950363

[22] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
Patch Generation Learned from Human-Written Patches. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco, CA, USA)
(ICSE ’13). IEEE Press, 802–811.

[23] Antti Laaksonen. 2020. Guide to Competitive Programming - Learning and
Improving Algorithms Through Contests, Second Edition. Springer. https:
//doi.org/10.1007/978-3-030-39357-1

[24] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[25] Junho Lee, Dowon Song, Sunbeom So, and Hakjoo Oh. 2018. Automatic Diagnosis
and Correction of Logical Errors for Functional Programming Assignments.

Proc. ACM Program. Lang. 2, OOPSLA, Article 158 (oct 2018), 30 pages. https:
//doi.org/10.1145/3276528

[26] Leping Li, Hui Liu, Kejun Li, Yanjie Jiang, and Rui Sun. 2022. Generating Concise
Patches for Newly Released Programming Assignments. IEEE Transactions on
Software Engineering (2022), 1–1. https://doi.org/10.1109/TSE.2022.3153522

[27] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun
Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James
Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de
Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-Level Code
Generation with AlphaCode.

[28] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of
Code Transforms for Patch Generation. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 727–739.
https://doi.org/10.1145/3106237.3106253

[29] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learn-
ing Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg, FL, USA)
(POPL ’16). Association for Computing Machinery, New York, NY, USA, 298–312.
https://doi.org/10.1145/2837614.2837617

[30] Yunlong Lu, Na Meng, and Wenxin Li. 2021. FAPR: Fast and Accurate Program
Repair for Introductory Programming Courses. CoRR abs/2107.06550 (2021).
arXiv:2107.06550 https://arxiv.org/abs/2107.06550

[31] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Ab-
hik Roychoudhury. 2018. Semantic program repair using a reference imple-
mentation. In Proceedings of the 40th International Conference on Software Engi-
neering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 129–139.
https://doi.org/10.1145/3180155.3180247

[32] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE). 691–701. https:
//doi.org/10.1145/2884781.2884807

[33] Khanh Nguyen and Guoqing Xu. 2013. Cachetor: Detecting Cacheable Data
to Remove Bloat. In Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). Association for
Computing Machinery, New York, NY, USA, 268–278. https://doi.org/10.1145/
2491411.2491416

[34] Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. 2015. Caramel:
Detecting and Fixing Performance Problems That Have Non-Intrusive Fixes. In
Proceedings of the 37th International Conference on Software Engineering - Volume
1 (Florence, Italy) (ICSE ’15). IEEE Press, 902–912.

[35] Benjamin Paassen, Barbara Hammer, Thomas W. Price, Tiffany Barnes, Sebastian
Gross, and Niels Pinkwart. 2018. The Continuous Hint Factory - Providing Hints
in Vast and Sparsely Populated Edit Distance Spaces. Journal of Educational Data
Mining 10, 1 (Jun. 2018), 1–35. https://doi.org/10.5281/zenodo.3554697

[36] David M. Perry, Dohyeong Kim, Roopsha Samanta, and Xiangyu Zhang. 2019.
SemCluster: Clustering of Imperative Programming Assignments Based on Quan-
titative Semantic Features. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI
2019). Association for Computing Machinery, New York, NY, USA, 860–873.
https://doi.org/10.1145/3314221.3314629

[37] Yewen Pu, Karthik Narasimhan, Armando Solar-Lezama, and Regina Barzilay.
2016. Sk_p: A Neural Program Corrector for MOOCs. In Companion Proceedings
of the 2016 ACM SIGPLAN International Conference on Systems, Programming,
Languages and Applications: Software for Humanity (Amsterdam, Netherlands)
(SPLASH Companion 2016). Association for Computing Machinery, New York,
NY, USA, 39–40. https://doi.org/10.1145/2984043.2989222

[38] Ruchir Puri, David S. Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi,
Vladimir Zolotov, Julian Dolby, Jie Chen, Mihir R. Choudhury, Lindsey Decker,
Veronika Thost, Luca Buratti, Saurabh Pujar, and Ulrich Finkler. 2021. Project
CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding
Tasks. CoRR abs/2105.12655 (2021). arXiv:2105.12655 https://arxiv.org/abs/2105.
12655

[39] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014.
The Strength of Random Search on Automated Program Repair. In Proceedings
of the 36th International Conference on Software Engineering (Hyderabad, India)
(ICSE 2014). Association for Computing Machinery, New York, NY, USA, 254–265.
https://doi.org/10.1145/2568225.2568254

[40] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and
B. Hartmann. 2017. Learning Syntactic Program Transformations from Examples.
In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
404–415.

[41] Mark Santolucito, Jialu Zhang, Ennan Zhai, Jürgen Cito, and Ruzica Piskac.
2022. Learning CI Configuration Correctness for Early Build Feedback. In 2022

https://www.mycplus.com/featured-articles/programming-contests-and-challenges/
https://www.mycplus.com/featured-articles/programming-contests-and-challenges/
https://www.facebook.com/codingcompetitions/hacker-cup/
https://www.facebook.com/codingcompetitions/hacker-cup/
https://icpc.global/
https://yandex.com/cup/algorithm/
https://doi.org/10.1145/3510418
https://doi.org/10.1145/3510418
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.48550/ARXIV.2207.11765
https://doi.org/10.1145/3133883
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/s11219-013-9208-0
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3296979.3192387
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://doi.org/10.1145/2950290.2950363
https://doi.org/10.1007/978-3-030-39357-1
https://doi.org/10.1007/978-3-030-39357-1
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3276528
https://doi.org/10.1145/3276528
https://doi.org/10.1109/TSE.2022.3153522
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/2837614.2837617
https://arxiv.org/abs/2107.06550
https://arxiv.org/abs/2107.06550
https://doi.org/10.1145/3180155.3180247
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2491411.2491416
https://doi.org/10.1145/2491411.2491416
https://doi.org/10.5281/zenodo.3554697
https://doi.org/10.1145/3314221.3314629
https://doi.org/10.1145/2984043.2989222
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://doi.org/10.1145/2568225.2568254

Automated Feedback Generation for Competition-Level Code ASE ’22, October 10–14, 2022, Rochester, MI, USA

IEEE International Conference on Software Analysis, Evolution and Reengineering
(SANER). 1006–1017. https://doi.org/10.1109/SANER53432.2022.00118

[42] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
Feedback Generation for Introductory Programming Assignments. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Seattle, Washington, USA) (PLDI 13). Association for Computing
Machinery, New York, NY, USA, 15–26. https://doi.org/10.1145/2491956.2462195

[43] Dowon Song, Woosuk Lee, and Hakjoo Oh. 2021. Context-Aware and Data-Driven
Feedback Generation for Programming Assignments. Association for Comput-
ing Machinery, New York, NY, USA, 328–340. https://doi.org/10.1145/3468264.
3468598

[44] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, Align, and Repair:
Data-Driven Feedback Generation for Introductory Programming Exercises (PLDI
2018). Association for Computing Machinery, New York, NY, USA, 481–495.
https://doi.org/10.1145/3192366.3192384

[45] Ke Wang, Zhendong Su, and Rishabh Singh. 2018. Dynamic Neural Program
Embeddings for Program Repair. In International Conference on Learning Repre-
sentations. https://openreview.net/forum?id=BJuWrGW0Z

[46] Michihiro Yasunaga and Percy Liang. 2021. Break-It-Fix-It: Unsupervised Learn-
ing for Program Repair. In Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event (Proceedings of Ma-
chine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR,
11941–11952. http://proceedings.mlr.press/v139/yasunaga21a.html

[47] Jooyong Yi, Umair Z. Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A Feasibility Study of Using Automated Program Repair for

Introductory Programming Assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE
2017). Association for Computing Machinery, New York, NY, USA, 740–751.
https://doi.org/10.1145/3106237.3106262

[48] Maksym Zavershynskyi, Alexander Skidanov, and Illia Polosukhin. 2018.
NAPS: Natural Program Synthesis Dataset. CoRR abs/1807.03168 (2018).
arXiv:1807.03168 http://arxiv.org/abs/1807.03168

[49] Jialu Zhang, Todd Mytkowicz, Mike Kaufman, Ruzica Piskac, and Shuvendu K.
Lahiri. 2022. Using Pre-Trained LanguageModels to Resolve Textual and Semantic
Merge Conflicts (Experience Paper). In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 77–88.
https://doi.org/10.1145/3533767.3534396

[50] Kaizhong Zhang and Dennis Shasha. 1989. Simple Fast Algorithms for the Editing
Distance between Trees and Related Problems. SIAM J. Comput. 18, 6 (1989),
1245–1262. https://doi.org/10.1137/0218082

[51] Kaizhong Zhang and Dennis E. Shasha. 1989. Simple Fast Algorithms for the
Editing Distance Between Trees and Related Problems. SIAM J. Comput. 18, 6
(1989), 1245–1262. https://doi.org/10.1137/0218082

[52] Kurtis Zimmerman and Chandan R. Rupakheti. 2015. An Automated Framework
for Recommending Program Elements to Novices. In Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineering (Lincoln,
Nebraska) (ASE ’15). IEEE Press, 283–288. https://doi.org/10.1109/ASE.2015.54

https://doi.org/10.1109/SANER53432.2022.00118
https://doi.org/10.1145/2491956.2462195
https://doi.org/10.1145/3468264.3468598
https://doi.org/10.1145/3468264.3468598
https://doi.org/10.1145/3192366.3192384
https://openreview.net/forum?id=BJuWrGW0Z
http://proceedings.mlr.press/v139/yasunaga21a.html
https://doi.org/10.1145/3106237.3106262
https://arxiv.org/abs/1807.03168
http://arxiv.org/abs/1807.03168
https://doi.org/10.1145/3533767.3534396
https://doi.org/10.1137/0218082
https://doi.org/10.1137/0218082
https://doi.org/10.1109/ASE.2015.54

	Abstract
	1 Introduction
	2 Understanding Competitive Programming
	3 Motivating Examples
	4 System Description
	4.1 Preprocessor
	4.2 Pattern Learner
	4.3 Repair Generator

	5 Evaluation
	5.1 Implementation and Experimental Setup
	5.2 Results
	5.3 Comparison with State-of-the-Art: Clara
	5.4 Efficiency

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

